(x^2+2x+1)+(x+1)(3x-1)=0

Simple and best practice solution for (x^2+2x+1)+(x+1)(3x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+2x+1)+(x+1)(3x-1)=0 equation:



(x^2+2x+1)+(x+1)(3x-1)=0
We get rid of parentheses
x^2+2x+(x+1)(3x-1)+1=0
We multiply parentheses ..
x^2+(+3x^2-1x+3x-1)+2x+1=0
We get rid of parentheses
x^2+3x^2-1x+3x+2x-1+1=0
We add all the numbers together, and all the variables
4x^2+4x=0
a = 4; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·4·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*4}=\frac{-8}{8} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*4}=\frac{0}{8} =0 $

See similar equations:

| 2n+n/5=10 | | 272=17k | | 5y+35=125 | | 2x+12x-3÷9=3 | | F(4)=3x^2+4x+5 | | 3-4x=28 | | 5x-32=74 | | 42°-16x=13x-9 | | 3/8m=-1/2 | | R×7=283r= | | 11x=5x+7 | | 3x.3x=9x² | | 0.25x+1.5=2(1/2x-3) | | 25=q+22 | | 43=​20+z3 | | 8x+3x=6x+25 | | 8*(3*x+2)+(2*(3*x+4))/1-(2*x)=-28 | | -3n+4n=-19 | | 8*(3*x+2)+(2*(3*x+4))/1-(2*x)=28 | | 3/10f+24=4−1/5f | | +4x-5)-(2+3x)=(7x-6) | | 6.2x+2=5.2 | | x-2+8=12 | | 2a+2=32 | | 3/8(16x-24)=-93-x | | Y=0(x)+5 | | x+2x+3x+60x=180° | | 5+4g8=1 | | 60x=75(9-x) | | 3(h−2)+1=−h+4+5h | | x-81=2 | | -10=m= |

Equations solver categories